
12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 1/21

Parsing In Python: Tools And Libraries

This is an article similar to a previous one we wrote: Parsing in Java
[https://tomassetti.me/parsing-in-java/] , so the introduction is the same. Skip to chapter 3 if
you have already read it.

If you need to parse a language, or document, from Python there are fundamentally three
ways to solve the problem:

use an existing library supporting that specific language: for example a library to parse
XML

building your own custom parser by hand

a tool or library to generate a parser: for example ANTLR, that you can use to build
parsers for any language

July 19, 2017 / in Parsing / by Gabriele Tomassetti

 Get the free Cheatsheet
Sign up to receive the cheatsheet version of this
guide in your inbox, to read it on all your devices,
whenever you want.

Name Email

Sign Up & Get the Cheatsheet

COURSE: USING
ANTLR LIKE A
PROFESSIONAL

A complete video course on

parsing and ANTLR, that will teach

you how to build parser for

everything from programming

languages to data formats.

Taught from professionals that

build parsers for a living.

BOOK: HOW TO
CREATE PRAGMATIC,
LIGHTWEIGHT
LANGUAGES

This book on Building Languages

is about building in a simple

manner productive languages with

parsers, compilers, interpreters,

editors and more.

STRUMENTA –
CONSULTING

Blog

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://tomassetti.me/parsing-in-python/
https://tomassetti.me/parsing-in-java/
https://tomassetti.me/category/language-engineering/parsing/
https://tomassetti.me/author/gtomassetti/
https://tomassetti.me/antlr-course
https://tomassetti.me/antlr-course
https://tomassetti.me/create-languages
https://tomassetti.me/create-languages
https://tomassetti.me/blog/
https://tomassetti.me/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 2/21

Use An Existing Library

The first option is the best for well known and supported languages, like XML or HTML. A
good library usually include also API to programmatically build and modify documents in
that language. This is typically more of what you get from a basic parser. The problem is
that such libraries are not so common and they support only the most common languages.
In other cases you are out of luck.

Building Your Own Custom Parser By Hand

You may need to pick the second option if you have particular needs. Both in the sense that
the language you need to parse cannot be parsed with traditional parser generators, or you
have specific requirements that you cannot satisfy using a typical parser generator. For
instance, because you need the best possible performance or a deep integration between
different components.

A Tool Or Library To Generate A Parser

In all other cases the third option should be the default one, because is the one that is most
flexible and has the shorter development time. That is why on this article we concentrate on
the tools and libraries that correspond to this option.

Note: text in blockquote describing a program comes from the respective documentation

Table Of Contents
1. Tools To Create Parsers [#tools]

2. Useful Things To Know About Parsers [#useful]

Structure Of A Parser [#structure]

Parse Tree And Abstract Syntax Tree [#parseTree]

Grammar [#grammar]

Left-recursive Rule [#leftRecursive]

Types Of Languages And Grammars [#typesOfLanguages]

3. Parser Generators [#parserGenerators]

Context-Free [#contextFree]

ANTLR [#antlr]

Lark [#lark]

Lrparsing [#lrparsing]

PLY [#ply]

PlyPlus [#plyPlus]

Pyleri [#pyleri]

PEG [#peg]

Arpeggio [#arpeggio]

Canopy [#canopy]

Parsimonious [#parsimonius]

If you need help designing
and developing DSLs,
languages, parsers,
compilers, interpreters, and
editors you can check the
services page of the
Consulting studio we
founded: Strumenta.

ANTLR (14)
Code processing (21)
Consulting (13)
Domain specific languages
(14)
Jetbrains MPS (11)
Language design (13)
Language Engineering (28)
Miscellany (4)
Model driven development
(4)
Non software development
(3)
Open-source (8)
Parsing (19)
Research (4)
Software Development (16)
Software Engineering (12)
Turin Programming
Language (4)
Whole Platform (2)
Xtext (3)

BLOG CATEGORIES

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://strumenta.com/services
https://strumenta.com/
https://strumenta.com/
https://tomassetti.me/category/language-engineering/antlr/
https://tomassetti.me/category/static-analysis/
https://tomassetti.me/category/consulting/
https://tomassetti.me/category/language-engineering/domain-specific-languages/
https://tomassetti.me/category/language-engineering/jetbrains-mps/
https://tomassetti.me/category/language-engineering/language-design/
https://tomassetti.me/category/language-engineering/
https://tomassetti.me/category/miscellany/
https://tomassetti.me/category/language-engineering/mdd/
https://tomassetti.me/category/random-stuff/
https://tomassetti.me/category/open-source/
https://tomassetti.me/category/language-engineering/parsing/
https://tomassetti.me/category/research/
https://tomassetti.me/category/development/
https://tomassetti.me/category/software-engineering/
https://tomassetti.me/category/turin-programming-language/
https://tomassetti.me/category/language-engineering/whole-platform/
https://tomassetti.me/category/language-engineering/xtext/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 3/21

pyPEG [#pypeg]

Tatsu [#tatsu]

Waxeye [#waxeye]

4. Parser Combinators [#parserCombinators]

Parsec.py, Parsy and Pyparsing [#parsec]

5. Python Libraries Related To Parsing [#pyLibraries]

6. Summary [#summary]

Tools To Create Parsers
We are going to see:

tools that can generate parsers usable from Python (and possibly from other languages)

Python libraries to build parsers

Tools that can be used to generate the code for a parser are called parser generators or
compiler compiler. Libraries that create parsers are known as parser combinators.

Parser generators (or parser combinators) are not trivial: you need some time to learn how
to use them and not all types of parser generators are suitable for all kinds of languages.
That is why we have prepared a list of the best known of them, with a short introduction for
each of them. We are also concentrating on one target language: Python. This also means
that (usually) the parser itself will be written in Python.

To list all possible tools and libraries parser for all languages would be kind of interesting,
but not that useful. That is because there will be simple too many options and we would all
get lost in them. By concentrating on one programming language we can provide an
apples-to-apples comparison and help you choose one option for your project.

Useful Things To Know About Parsers
To make sure that these list is accessible to all programmers we have prepared a short
explanation for terms and concepts that you may encounter searching for a parser. We are
not trying to give you formal explanations, but practical ones.

Structure Of A Parser

A parser is usually composed of two parts: a lexer, also known as scanner or tokenizer, and
the proper parser. Not all parsers adopt this two-steps schema: some parsers do not
depend on a lexer. They are called scannerless parsers.

A lexer and a parser work in sequence: the lexer scans the input and produces the
matching tokens, the parser scans the tokens and produces the parsing result.

Let’s look at the following example and imagine that we are trying to parse a mathematical
operation.

The lexer scans the text and find ‘4’, ‘3’, ‘7’ and then the space ‘ ‘. The job of the lexer is to
recognize that the first characters constitute one token of type NUM. Then the lexer finds a
‘+’ symbol, which corresponds to a second token of type PLUS, and lastly it finds another
token of type NUM.

1 437 + 734

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 4/21

The parser will typically combine the tokens produced by the lexer and group them.

The definitions used by lexers or parser are called rules or productions. A lexer rule will
specify that a sequence of digits correspond to a token of type NUM, while a parser rule will
specify that a sequence of tokens of type NUM, PLUS, NUM corresponds to an expression.

Scannerless parsers are different because they process directly the original text, instead
of processing a list of tokens produced by a lexer.

It is now typical to find suites that can generate both a lexer and parser. In the past it was
instead more common to combine two different tools: one to produce the lexer and one to
produce the parser. This was for example the case of the venerable lex & yacc couple: lex
produced the lexer, while yacc produced the parser.

Parse Tree And Abstract Syntax Tree

There are two terms that are related and sometimes they are used interchangeably: parse
tree and Abstract SyntaxTree (AST).

Conceptually they are very similar:

they are both trees: there is a root representing the whole piece of code parsed. Then
there are smaller subtrees representing portions of code that become smaller until
single tokens appear in the tree

the difference is the level of abstraction: the parse tree contains all the tokens which
appeared in the program and possibly a set of intermediate rules. The AST instead is a
polished version of the parse tree where the information that could be derived or is not
important to understand the piece of code is removed

In the AST some information is lost, for instance comments and grouping symbols
(parentheses) are not represented. Things like comments are superfluous for a program
and grouping symbols are implicitly defined by the structure of the tree.

A parse tree is a representation of the code closer to the concrete syntax. It shows many
details of the implementation of the parser. For instance, usually a rule corresponds to the
type of a node. A parse tree is usually transformed in an AST by the user, possibly with
some help from the parser generator.

A graphical representation of an AST looks like this.

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 5/21

Sometimes you may want to start producing a parse tree and then derive from it an AST.
This can make sense because the parse tree is easier to produce for the parser (it is a
direct representation of the parsing process) but the AST is simpler and easier to process
by the following steps. By following steps we mean all the operations that you may want to
perform on the tree: code validation, interpretation, compilation, etc..

Grammar

A grammar is a formal description of a language that can be used to
recognize its structure.

In simple terms is a list of rules that define how each construct can be composed. For
example, a rule for an if statement could specify that it must starts with the “if” keyword,
followed by a left parenthesis, an expression, a right parenthesis and a statement.

A rule could reference other rules or token types. In the example of the if statement, the
keyword “if”, the left and the right parenthesis were token types, while expression and
statement were references to other rules.

The most used format to describe grammars is the Backus-Naur Form (BNF), which also
has many variants, including the Extended Backus-Naur Form. The Extended variant has
the advantage of including a simple way to denote repetitions. A typical rule in a Backus-
Naur grammar looks like this:

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 6/21

The <simbol> is usually nonterminal, which means that it can be replaced by the group
of elements on the right, __expression__ . The element __expression__ could
contains other nonterminal symbols or terminal ones. Terminal symbols are simply the ones
that do not appear as a <symbol> anywhere in the grammar. A typical example of a
terminal symbol is a string of characters, like “class”.

Left-recursive Rules

In the context of parsers an important feature is the support for left-recursive rules. This
means that a rule could start with a reference to itself. This reference could be also indirect.

Consider for example arithmetic operations. An addition could be described as two
expression(s) separated by the plus (+) symbol, but an expression could also contain other
additions.

This description also match multiple additions like 5 + 4 + 3. That is because it can be
interpreted as expression (5) (‘+’) expression(4+3). And then 4 + 3 itself can be divided in
its two components.

The problem is that this kind of rules may not be used with some parser generators. The
alternative is a long chain of expressions that takes care also of the precedence of
operators.

Some parser generators support direct left-recursive rules, but not indirect one.

Types Of Languages And Grammars

We care mostly about two types of languages that can be parsed with a parser generator:
regular languages and context-free languages. We could give you the formal definition
according to the Chomsky hierarchy of languages
[https://en.wikipedia.org/wiki/Chomsky_hierarchy] , but it would not be that useful. Let’s look
at some practical aspects instead.

A regular language can be defined by a series of regular expressions, while a context-free
one need something more. A simple rule of thumb is that if a grammar of a language has
recursive elements it is not a regular language. For instance, as we said elsewhere, HTML
is not a regular language [https://tomassetti.me/antlr-mega-tutorial/] . In fact, most
programming languages are context-free languages.

Usually to a kind of language correspond the same kind of grammar. That is to say there
are regular grammars and context-free grammars that corresponds respectively to regular
and context-free languages. But to complicate matters, there is a relatively new (created in
2004) kind of grammar, called Parsing Expression Grammar (PEG). These grammars are
as powerful as Context-free grammars, but according to their authors they describe
programming languages more naturally.

The Differences Between PEG and CFG

The main difference between PEG and CFG is that the ordering of choices is meaningful in
PEG, but not in CFG. If there are many possible valid ways to parse an input, a CFG will be
ambiguous and thus wrong. Instead with PEG the first applicable choice will be chosen,
and this automatically solve some ambiguities.

1 <symbol> ::= __expression__

1
2
3
4

addition ::= expression '+' expression
multiplication ::= expression '*' expression
// an expression could be an addition or a multiplication or a number
expression ::= addition | multiplication |// a number

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://tomassetti.me/antlr-mega-tutorial/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 7/21

Another difference is that PEG use scannerless parsers: they do not need a separate lexer,
or lexical analysis phase.

Traditionally both PEG and some CFG have been unable to deal with left-recursive rules,
but some tools have found workarounds for this. Either by modifying the basic parsing
algorithm, or by having the tool automatically rewrite a left-recursive rule in a non recursive
way. Either of these ways has downsides: either by making the generated parser less
intelligible or by worsen its performance. However, in practical terms, the advantages of
easier and quicker development outweigh the drawbacks.

If you want to know more about the theory of parsing, you should read A Guide to
Parsing: Algorithms and Terminology [https://tomassetti.me/guide-parsing-algorithms-
terminology/] .

Parser Generators
The basic workflow of a parser generator tool is quite simple: you write a grammar that
defines the language, or document, and you run the tool to generate a parser usable from
your Python code.

The parser might produce the AST, that you may have to traverse yourself or you can
traverse with additional ready-to-use classes, such Listeners
[https://en.wikipedia.org/wiki/Observer_pattern] or Visitors
[https://en.wikipedia.org/wiki/Visitor_pattern] . Some tools instead offer the chance to
embed code inside the grammar to be executed every time the specific rule is matched.

Usually you need a runtime library and/or program to use the generated parser.

Context Free

Let’s see the tools that generate Context Free parsers.

ANTLR

ANTLR [http://www.antlr.org/] is a great parser generator written in Java that can also
generate parsers for Python and many other languages. There is also a beta version for
TypeScript [https://github.com/tunnelvisionlabs/antlr4ts] from the same guy that makes the
optimized C# version. ANTLR is based on an new LL algorithm developed by the author
and described in this paper: Adaptive LL(*) Parsing: The Power of Dynamic Analysis (PDF)
[http://www.antlr.org/papers/allstar-techreport.pdf] .

It is quite popular for its many useful features: for instance version 4 supports direct left-
recursive rules. However a real added value of a vast community it is the large amount of
grammars available [https://github.com/antlr/grammars-v4] .

It provides two ways to walk the AST, instead of embedding actions in the grammar: visitors
and listeners. The first one is suited when you have to manipulate or interact with the
elements of the tree, while the second is useful when you just have to do something when a
rule is matched.

The typical grammar is divided in two parts: lexer rules and parser rules. The division is
implicit, since all the rules starting with an uppercase letter are lexer rules, while the ones
starting with a lowercase letter are parser rules. Alternatively lexer and parser grammars
can be defined in separate files.

1
2
3

grammar simple;

basic : NAME ':' NAME ;

A very simple ANTLR grammar

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://tomassetti.me/guide-parsing-algorithms-terminology/
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
http://www.antlr.org/
https://github.com/tunnelvisionlabs/antlr4ts
http://www.antlr.org/papers/allstar-techreport.pdf
https://github.com/antlr/grammars-v4

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 8/21

If you are interested to learn how to use ANTLR, you can look into this giant ANTLR tutorial
[https://tomassetti.me/antlr-mega-tutorial] we have written. If you are ready to become a
professional ANTLR developer, you can buy our video course to Build professional
parsers and languages using ANTLR [https://tomassetti.me/antlr-course/] . The
course is taught using Python, so you will feel right at home.

Lark

A modern parsing library for Python, implementing Earley & LALR(1)
and an easy interface

Lark [https://github.com/erezsh/lark] is a parser generator that works as a library. You write
the grammar in a string or a file and then use it as an argument to dynamically generate the
parser. Lark can use two algorithms: Earley is used when you need to parse all grammars
and LALR when you need speed. Earley can parse also ambiguous grammars. Lark offers
the chance to automatically solve the ambiguity by choosing the simplest option or
reporting all options.

Lark grammars are written in an EBNF format. They cannot include actions. This means
that they are clean and readable, but also that you have to traverse the resulting tree
yourself. Although there is a function that can help with that if you use the LALR algorithm.
On the positive side you can also use specific notations in the grammar to automatically
generate an AST. You can do that by dropping certain nodes, merging or transforming
them.

The following example grammar shows a useful feature of Lark: it includes rules for
common things, like whitespace or numbers.

Lark comes with a tool to convert Nearley grammars in its own format. It also includes a
useful function to transform the tree generated by the parser in an image.

It has a sufficient documentation, with examples and tutorials available. There is also a
small reference.

Lrparsing

lrparsing [http://lrparsing.sourceforge.net/doc/html/] is an LR(1)
parser hiding behind a pythonic interface

Lrparsing is a parser generator whose grammars are defined as Python expressions.
These expressions are attribute of a class that corresponds to rule of a traditional grammar.

4
5
6
7

NAME : [a-zA-Z]* ;

COMMENT : '/*' .*? '*/' -> skip ;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

parser = Lark('''?sum: product
 | sum "+" product -> add
 | sum "-" product -> sub

 ?product: item
 | product "*" item -> mul
 | product "/" item -> div

 ?item: NUMBER -> number
 | "-" item -> neg
 | "(" sum ")"

 %import common.NUMBER
 %import common.WS
 %ignore WS
 ''', start='sum')

Lark Example Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://tomassetti.me/antlr-mega-tutorial
https://tomassetti.me/antlr-course/
https://github.com/erezsh/lark
http://lrparsing.sourceforge.net/doc/html/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 9/21

They are usually dynamically generated, but the library provide a function to precompile a
parse table beforehand.

Given their format depending on Python, lrparsing grammars can be easy to read for
Python developers, but they are harder to read than a traditional grammar.

Lrparsing also provide some basic functions to print parsing tree and grammar rules for
debugging purposes.

The documentation is really good: it explains everything you need to know about the library
and it also provide some guidance on creating good grammars (eg. solving ambiguities).
There are also quite complex example grammars, like one for SQLite.

PLY

PLY [https://github.com/dabeaz/ply] doesn’t try to do anything more
or less than provide the basic lex/yacc functionality. In other words,
it’s not a large parsing framework or a component of some larger
system.

PLY is a stable and maintained tool with a long history starting from 2001. It is also quite
basic, given that there are no tools for automatic creation of AST, or anything that a C
developer of the previous century would define as fancy stuff. The tool was primarily
created as instructional tool. This explains its simplicity, but it also the reason because it
offer great support for diagnostics or catching mistakes in the grammar.

A PLY grammar is written in Python code in a BNF-like format. Lexer and parser functions
can be used separately. The following example shows only the lexer, but the parser works
in the same way.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// from the documentation
class ExprParser(lrparsing.Grammar):
 #
 # Put Tokens we don't want to re-type in a TokenRegistry.
 #
 class T(lrparsing.TokenRegistry):
 integer = Token(re="[0-9]+")
 integer["key"] = "I'm a mapping!"
 ident = Token(re="[A-Za-z_][A-Za-z_0-9]*")
 #
 # Grammar rules.
 #
 expr = Ref("expr") # Forward reference
 call = T.ident + '(' + List(expr, ',') + ')'
 atom = T.ident | T.integer | Token('(') + expr + ')' | call
 expr = Prio(# If ambiguous choose atom 1st,
 ...
 atom,
 Tokens("+ - ~") >> THIS, # >> means right associative
 THIS << Tokens("* / // %") << THIS,
 THIS << Tokens("+ -") << THIS,# THIS means "expr" here
 THIS << (Tokens("== !=") | Keyword("is")) << THIS)
 expr["a"] = "I am a mapping too!"
 START = expr # Where the grammar must start
 COMMENTS = (# Allow C and Python comments
 Token(re="#(?:[^\r\n]*(?:\r\n?|\n\r?))") |
 Token(re="/[*](?:[^*]|[*][^/])*[*]/"))

1
2
3
4
5
6
7
8

import ply.lex as lex

List of token names. This is always required
tokens = (
 'NUMBER',
 'PLUS',
 'MINUS',
 'TIMES',

Example lrparsing Python

PLY example with only the lexer Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://github.com/dabeaz/ply

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 10/21

The documentation [http://www.dabeaz.com/ply/ply.htm] is extensive, clear, with abundant
examples and explanations of parsing concepts. All that you need, if you can get pass the
’90 looks.

There is a port for RPython called RPLY [https://github.com/alex/rply] .

PlyPlus

Plyplus is a general-purpose parser built on top of PLY
[http://www.dabeaz.com/ply/] (LALR(1)), and written in Python.
Plyplus features a modern design, and focuses on simplicity without
losing power.

PlyPlus is a tool that is built on top of PLY, but it is very different from it. The authors and
the way the names are written are different. Compared to its father the documentation is
lacking, but the features are many.

You can write a grammar in a .g file or in a string, but it is always generated dynamically.
The format is based on EBNF, but a grammar can also include special notations to simplify
the creation of an AST. This notation allows to exclude or drop certain rules from the
generated tree.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

 'DIVIDE',
 'LPAREN',
 'RPAREN',
)

Regular expression rules for simple tokens
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'*'
t_DIVIDE = r'/'
t_LPAREN = r'\('
t_RPAREN = r'\)'

A regular expression rule with some action code
def t_NUMBER(t):
 r'\d+'
 t.value = int(t.value)
 return t

Define a rule so we can track line numbers
def t_newline(t):
 r'\n+'
 t.lexer.lineno += len(t.value)

A string containing ignored characters (spaces and tabs)
t_ignore = ' \t'

Error handling rule
def t_error(t):
 print("Illegal character '%s'" % t.value[0])
 t.lexer.skip(1)

Build the lexer
lexer = lex.lex()

1
2
3
4
5
6
7
8
9
10
11
12

// from the documentation
start: add;

// Rules
?add: (add add_symbol)? mul;
?mul: (mul mul_symbol)? atom;
// rules preceded by @ will not appear in the tree
@atom: neg | number | '\(' add '\)';
neg: '-' atom;

// Tokens
number: '[\d.]+';

Example calc.g
Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

http://www.dabeaz.com/ply/ply.htm
https://github.com/alex/rply
http://www.dabeaz.com/ply/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 11/21

PlyPlus include a function to draw an image of a parse tree based upon pydot and
graphviz. PlyPlus has unique features, too. It allows you to select nodes in the AST using
selectors similar to the CSS selectors used in web development. For instance, if you want
to fill all terminal nodes that contain the letter ‘n’, you can find them like this:

This is a unique feature that can be useful, for example, if you are developing a static
analysis or refactoring tool.

Pyleri

Python Left-Right Parser [https://github.com/transceptor-technology/pyleri] (pyleri) is part of
a family of similar parser generators for JavaScript, Python, C, Go and Java.

A grammar for Pyleri must be defined in Python expressions that are part of a class. Once it
is defined, the grammar can be exported as a file defining the grammar in Python or any
other supported language. For example, you can define the grammar in Python, export it to
JacaScript and then use the JavaScript version of pyleri to run it. You cannot do the
inverse, i.e., you cannot create a grammar in JavaScript and export it to Python. So, even if
you want to use another language, it is better to create the grammar in Python and then
export it to that language.

Apart from this interesting feature, Pyleri is a simple and easy to use tool.

In practical terms there are two kinds of parsing rules: simple and combination of simple
ones. The simple ones are essentially tokens created with regular expressions, while the
complex ones are created using ready-to-use parsing functions (e.g., Sequence to parse a
sequence of elements).

So, it is a cross between a parser generator and a parser combinator. However, it is more
powerful that a traditional parser combinator and can also generate a parse tree. Another
neat feature is that it provide a property expecting , that list the elements that it can
accept at that particular position. This is very useful if you are building auto-completion
functionality.

This mixture of simplicity of syntax and powerful features can quite attractive for people that
something powerful, but are not used to a traditional parser generator.

PEG

After the CFG parsers is time to see the PEG parsers available for Python.

13
14
15
16

mul_symbol: '*' | '/';
add_symbol: '\+' | '-';

WS: '[\t]+' (%ignore);

1
2
3

// from the documentation
>>> x.select('/.*n.*/:is-leaf')
['Popen', 'isinstance', 'basestring', 'stdin']

1
2
3
4
5
6
7
8
9
10
11
12
13

from the documentation
Create a Grammar Class to define your language
class MyGrammar(Grammar):
 r_name = Regex('(?:"(?:[^"]*)")+')
 k_hi = Keyword('hi')
 START = Sequence(k_hi, r_name)

Compile your grammar by creating an instance of the Grammar Class.
my_grammar = MyGrammar()

Use the compiled grammar to parse 'strings'
print(my_grammar.parse('hi "Iris"').is_valid) # => True
print(my_grammar.parse('bye "Iris"').is_valid) # => False

Selectors example

Pyleri example Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://github.com/transceptor-technology/pyleri

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 12/21

Arpeggio

Arpeggio [http://www.igordejanovic.net/Arpeggio/] is recursive
descent parser with backtracking and memoization (a.k.a. pacrat
parser). Arpeggio grammars are based on PEG formalism.

The documentation defines Arpeggio as a parser interpreter, since parser are generated
dynamically from a grammar. In any case it does not work any different from many other
Python parser generators. A peculiarity of Arpeggio is that you can define a grammar in a
textual PEG format or using Python expressions. Actually, there are two dialects of PEGs,
one with a cleaner Python-like syntax and the other the traditional PEG one.

Arpeggio generate a simple parse tree, but it supports the use of a visitor. The visitor can
also include a second action to perform after all the tree nodes have been processed. This
is used for post-processing, for instance it can be used to deal with symbol reference.

An Arpeggio grammar defined with either a PEG notation or the Python one is usually quite
readable. The following example uses Python notation.

There are a couple of options for debugging: verbose and informative ouput and the
generation of DOT files of the parser. The DOT files can be used for creating a visualization
of the parser, but you will have to call graphviz yourself. The documentation is
comprehensive and well-organized.

Arpeggio is the foundation of a more advanced tool for the creation of DSL called textX
[https://github.com/igordejanovic/textX] . TextX is made by the same developer that created
Arpeggio and it is inspired by the more famous XText.

Canopy

Canopy [http://canopy.jcoglan.com/] is a parser compiler targeting
Java, JavaScript, Python and Ruby. It takes a file describing a
parsing expression grammar and compiles it into a parser module in
the target language. The generated parsers have no runtime
dependency on Canopy itself.

It also provides easy access to the parse tree nodes.

A Canopy grammar has the neat feature of using actions annotation to use custom code in
the parser. In practical terms. you just write the name of a function next to a rule and then

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

partial example from the documentation
def record(): return field, ZeroOrMore(",", field)
def field(): return [quoted_field, field_content]
def quoted_field(): return '"', field_content_quoted, '"'
def field_content(): return _(r'([^,\n])+')
def field_content_quoted(): return _(r'(("")|([^"]))+')
def csvfile(): return OneOrMore([record, '\n']), EOF

[..]

def main(debug=False):
 # First we will make a parser - an instance of the CVS parser model.
 # Parser model is given in the form of python constructs therefore w
e
 # are using ParserPython class.
 # Skipping of whitespace will be done only for tabs and spaces. Newl
ines
 # have semantics in csv files. They are used to separate records.
parser = ParserPython(csvfile, ws='\t ', debug=debug)

[..]

Arpeggio example Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

http://www.igordejanovic.net/Arpeggio/
https://github.com/igordejanovic/textX
http://canopy.jcoglan.com/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 13/21

you implement the function in your source code.

The Python file containing the action code.

Parsimonious

Parsimonious [https://github.com/erikrose/parsimonious] aims to be
the fastest arbitrary-lookahead parser written in pure Python—and
the most usable. It’s based on parsing expression grammars
(PEGs), which means you feed it a simplified sort of EBNF notation.

Parsimonious is a no-nonsense tool designed for speed and low usage of RAM. It is also a
no-documentation tool, there are not even complete examples. Actually the short README
file explain the basics and redirect you to Docstring [https://it.wikipedia.org/wiki/Docstring]
for more specific information.

In any case Parsimonious is good working tool that allows you dynamically create a
grammar defined in a file or a string. You can also define a visitor to traverse and transform
the parsing tree. So, if you are already familiar with the PEG format you do not need to
know anything else to use it at its fullest.

A Parsimonious grammar is readable like any other PEG grammar.

pyPEG

pyPEG [https://fdik.org/pyPEG/index.html] is a plain and simple
intrinsic parser interpreter framework for Python version 2.7 and 3.x

PyPEG is a framework to parse and compose text. Which means that you define a
grammar in a syntax as powerful as PEG, but you do it in Python code. And then you use
this grammar to parse and/or compose a text based upon that grammar. Obviously if you
compose a text you have to provide the data yourself. In this case it works as a template
system.

The syntax for a PyPEG is on the verbose side, frankly it is too verbose to be productive if
you just want to use it for simple parsing. But it is a cool library if you want to parse and
manipulate some document in a specific format. For instance, you could use it to transform
documentation in one format to another.

1
2
3
4
5
6
7

// the actions are prepended by %
grammar Maps
 map <- "{" string ":" value "}" %make_map
 string <- "'" [^']* "'" %make_string
 value <- list / number
 list <- "[" value ("," value)* "]" %make_list
 number <- [0-9]+ %make_number

1
2
3
4
5

class Actions(object):
 def make_map(self, input, start, end, elements):
 return {elements[1]: elements[3]}

 [..]

1
2
3
4
5
6
7

example from the documentation
my_grammar = Grammar(r"""
 styled_text = bold_text / italic_text
 bold_text = "((" text "))"
 italic_text = "''" text "''"
 text = ~"[A-Z 0-9]*"i
 """)

1 # from the documentation

A Canopy grammar with actions

Parsimonious example Python

A pyPEG example Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://github.com/erikrose/parsimonious
https://it.wikipedia.org/wiki/Docstring
https://fdik.org/pyPEG/index.html

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 14/21

PyPEG does not produce a standard tree, but a structure based upon the defined grammar.
Look at what happens for the previous example.

TatSu

TatSu (for grammar compiler) is a tool that takes grammars in a
variation of EBNF as input, and outputs memoizing (Packrat) PEG
parsers in Python.

TatSu is the successor of Grako, another parser generator tool, and it has a good level of
compatibility [http://tatsu.readthedocs.io/en/stable/grako.html] with it. It can create a parser
dynamically from a grammar or compiling into a Python module.

TatSu generate PEG parsers, but grammars are defined in a variant of EBNF. Though the
order of rules matters as it is usual for PEG grammars. So it is actually a sort of cross
between the two. This variant includes support for dealing with associativity and simplifying
the generated tree or model (more on that later). Support for left-recursive rule is present,
but experimental.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

from pypeg2 import *
class Type(Keyword):
grammar = Enum(K("int"), K("long"))

class Parameter:
grammar = attr("typing", Type), name()

class Parameters(Namespace):
grammar = optional(csl(Parameter))

class Instruction(str):
grammar = word, ";"

block = "{", maybe_some(Instruction), "}"
class Function(List):
grammar = attr("typing", Type), name(), \
 "(", attr("parms", Parameters), ")", block

f = parse("int f(int a, long b) { do_this; do_that; }", Function)

1
2
3
4
5
6
7
8
9
10
11

execute the example
>>> f.name
Symbol('f')
>>> f.typing
Symbol('int')
>>> f.parms["b"].typing
Symbol('long')
>>> f[0]
'do_this'
>>> f[1]
'do_that'

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// TatSu example grammar from the tutorial
@@grammar::CALC

start
 =
 expression $
 ;

expression
 =
 | expression '+' term
 | expression '-' term
 | term
 ;

term
 =
 | term '*' factor
 | term '/' factor

calc.ebnf

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

http://tatsu.readthedocs.io/en/stable/grako.html

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 15/21

TatSu grammars cannot include actions, that can be defined in a separate Python class.
Instead you have to annotate the grammar if you want to use an object model in place of
semantic actions. An object model is a way to separate the parsing process from the entity
that is parsed. In practical terms instead of doing something when a certain rule is matched
you do something when a certain object is defined. This object may be defined by more
than one rule.

The following extract example defines an object Multiply that corresponds to the rule
multiplication.

The object model can then be used for what TatSu calls walker (essentially a visitor for the
model).

The same object model can also be used for code generation, for instance to transform one
format into another one. But for that you obviously cannot reuse the walker, but you have to
define a template class for each object.

TatSu provides also: a tool to translate ANTLR grammars, complex trace output and a
graphical representation of the tree using pygraphviz. ANLTR grammar may have to be
manually adapted to respect PEG constraints.

The documentation is complete: it shows all the features, provide examples and even has
basic introduction to parsing concepts, like AST.

20
21
22
23
24
25
26
27
28
29
30
31

 | factor
 ;

factor
 =
 | '(' expression ')'
 | number
 ;

number
 =
 /\d+/

1
2
3
4

multiplication::Multiply
 =
 left:factor op:'*' ~ right:term
 ;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

from tatsu.walkers import NodeWalker

class CalcWalker(NodeWalker):
 def walk_object(self, node):
 return node

 def walk__add(self, node):
 return self.walk(node.left) + self.walk(node.right)

 def walk__subtract(self, node):
 return self.walk(node.left) - self.walk(node.right)

 def walk__multiply(self, node):
 return self.walk(node.left) * self.walk(node.right)

 def walk__divide(self, node):
 return self.walk(node.left) / self.walk(node.right)

def parse_and_walk_model():
 grammar = open('grammars/calc_model.ebnf').read()

 parser = tatsu.compile(grammar, asmodel=True)
 model = parser.parse('3 + 5 * (10 - 20)')

 print('# WALKER RESULT IS:')
 print(CalcWalker().walk(model))
 print()

TatSu example Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 16/21

Waxeye

Waxeye [https://waxeye.org/] is a parser generator based on parsing
expression grammars (PEGs). It supports C, Java, Javascript,
Python, Ruby and Scheme.

Waxeye can facilitate the creation of an AST by defining nodes in the grammar that will not
be included in the generated tree. That is quite useful, but a drawback of Waxeye is that it
only generates a AST. In the sense that there is no way to automatically execute an action
when you match a node. You have to traverse and execute what you need manually.

One positive side-effect of this limiation is that grammars are easily readable and clean.
They are also independent from any language.

A particular feature of Waxeye is that it provides some help to compose different grammars
together and then it facilitates modularity. For instance, you could create a common
grammar for identifiers, that are usually similar in many languages.

Waxeye has a great documentation in the form of a manual that explains basic concepts
and how to use the tool for all the languages it supports. There are a few example
grammars.

Parser Combinators
They allow you to create a parser by combining different pattern matching functions, that
are equivalent to grammar rules. They are generally considered best suited for simpler
parsing needs.

In practice this means that they are very useful for all the little parsing problems you find. If
the typical developer encounters a problem, that is too complex for a simple regular
expression, these libraries are usually the solution. In short, if you need to build a parser,
but you don’t actually want to, a parser combinator may be your best option.

Some readers have indicated us funcparserlib [https://github.com/vlasovskikh/funcparserlib]
, but we decided to not include it because it has been unmantained for a few years.

Parsec.py, Parsy and Pyparsing

A universal Python parser combinator library inspired by Parsec
library of Haskell.

That is basically the extent of the documentation on Parsec.py
[https://github.com/sighingnow/parsec.py] . Though there are a couple of examples. If you

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// from the manual

calc <- ws sum

sum <- prod *([+-] ws prod)

prod <- unary *([*/] ws unary)

unary <= '-' ws unary
 | :'(' ws sum :')' ws
 | num

num <- +[0-9] ?('.' +[0-9]) ws

ws <: *[\t\n\r]

Calc.waxeye

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://waxeye.org/
https://github.com/vlasovskikh/funcparserlib
https://github.com/sighingnow/parsec.py

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 17/21

already know how to use the original Parsec library or one of its many clones you can try to
use it. It does not look bad, but the lack of documentation is a problem for new users.

Parsy [https://github.com/python-parsy/parsy] is an easy way to
combine simple, small parsers into complex, larger parsers. If it
means anything to you, it’s a monadic parser combinator library for
LL(infinity) grammars in the spirit of Parsec, Parsnip, and
Parsimmon.

Parsy was an abandoned project for a while, but it was recently recovered and taken up by
a new maintainer and it is now in a good shape. Among other things the new developer
brought the project to recent coding practices (e.g., testing coverage).

The project might not be as powerful as an “industrial-strength” parser combinator such
Parsec (the original one), but it has a few nice features. For instance, you can create a
generator function to create a parser
[http://parsy.readthedocs.io/en/latest/ref/generating.html] . It now requires Python 3.3 or
later, which should only be a problem for people stuck with Python 2.

The project now has ample documentation, examples and a tutorial. The following example
comes from the documentation and shows how to parse a date.

The pyparsing [http://pyparsing.wikispaces.com/home] module is an
alternative approach to creating and executing simple grammars, vs.
the traditional lex/yacc approach, or the use of regular expressions.
The pyparsing module provides a library of classes that client code
uses to construct the grammar directly in Python code.

Pyparsing is a stable and mature software developed for more than 14 years which has
many examples [http://pyparsing.wikispaces.com/Examples] , but still a confusing and
lacking documentation. While Pyparsing is as equally powerful as a traditional parser
combinator, it works a bit differently and this lack in the proper documentation makes it
frustrating.

However, if you take the time to learn on its own, the following example shows that can be
easy to use.

Python Libraries Related to Parsing
Python offers also some other libraries or tools related to parsing.

1
2
3
4
5
6
7

from the documentation
parsing a date
from parsy import string, regex
from datetime import date
ddmmyy = regex(r'[0-9]{2}').map(int).sep_by(string("-"), min=3, max=3).co
mbine(
 lambda d, m, y: date(2000 + y, m, d))
ddmmyy.parse('06-05-14')

1
2
3
4
5
6
7
8
9

example from the documentation
define grammar
greet = Word(alphas) + "," + Word(alphas) + "!"

input string
hello = "Hello, World!"

parse input string
print hello, "->", greet.parseString(hello)

Parsy example Python

greeeting.py

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://github.com/python-parsy/parsy
http://parsy.readthedocs.io/en/latest/ref/generating.html
http://pyparsing.wikispaces.com/home
http://pyparsing.wikispaces.com/Examples

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 18/21

Parsing Python Inside Python

There is one special case that could be managed in more specific way: the case in which
you want to parse Python code in Python. When it comes to Python the best choice is to
rely on your own Python interpreter.

The standard reference implementation of Python, known as CPython, include a few
modules to access its internals for parsing: tokenize
[https://docs.python.org/release/3.6.1/library/tokenize.html] , parser
[https://docs.python.org/release/3.6.1/library/parser.html] and ast
[https://docs.python.org/release/3.6.1/library/ast.html] . You may also be able to use the
parser in the PyPy interpreter [http://doc.pypy.org/en/latest/parser.html] .

Parsing with Regular Expressions and The Like

Usually you resort to parsing libraries and tools when regular expression are not enough.
However, there is a good library for Python than can extend the life and usefulness of
regular expressions or using elements of similar complexity.

Regular Expression based parsers for extracting data from natural
languages [..]

This library basically just gives you a way to combine Regular
Expressions together and hook them up to some callback functions
in Python.

Reparse [http://reparse.readthedocs.io/en/latest/] is a simple tool that can nonetheless quite
useful in certain scenarios. The author himself says that it is much simpler and with less
feature than PyParsing or Parboiled.

The basic idea is that you define regular expressions, the patterns in which they can
combine and the functions that are called when an expression or pattern is found. You must
define functions in Python, but expressions and pattern can be defined in Yaml, JSON or
Python.

In this example from the documentation expressions and patterns are defined in Yaml.

Fields like Matches are there for humans, but can be used for testing by Reparse.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Color:
 Basic Color:
 Expression: (Red|Orange|Yellow|Green|Blue|Violet|Brown|Black)
 Matches: Orange | Green
 Non-Matches: White
 Groups:
 - Color

Time:
 Basic Time:
 Expression: ([0-9]|[1][0-2]) \s? (am|pm)
 Matches: 8am | 3 pm
 Non-Matches: 8a | 8:00 am | 13pm
 Groups:
 - Hour
 - AMPM

1
2
3
4
5
6

BasicColorTime:
 Order: 1
 Pattern: |
 <Color> \s? at \s? <Time>
 # Angle brackets detonate expression groups
 # Multiple expressions in one group are combined together

expressions.yaml YAML

patterns.yaml YAML

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://docs.python.org/release/3.6.1/library/tokenize.html
https://docs.python.org/release/3.6.1/library/parser.html
https://docs.python.org/release/3.6.1/library/ast.html
http://doc.pypy.org/en/latest/parser.html
http://reparse.readthedocs.io/en/latest/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 19/21

An example function in Python for the pattern.

The file that puts everything together.

Parsing Binary Data: Construct

Instead of writing imperative code to parse a piece of data, you
declaratively define a data structure that describes your data. As this
data structure is not code, you can use it in one direction to parse
data into Pythonic objects, and in the other direction, to build objects
into binary data.

And that is it: Construct [https://construct.readthedocs.io/en/latest/] . You could parse binary
data even with some parser generators (e.g. ANTLR), but Constuct make it much easier. It
is a sort of DSL combined with a parser combinator to parse binary formats. It gives you a
bunch of fields to manage binary data: apart from the obvious ones (e.g. float, string, bytes
etc.), there are a few specialized to manage sequences of fields (sequence), group of them
(struct) and a few conditional statements.

It also makes available functions to adapt or validate (test) the data and debug any problem
you found.

As you can see in the following example, it is quite easy to use.

1
2
3
4
5
6
7
8
9
10
11
12

from datetime import time
def color_time(Color=None, Time=None):
 Color, Hour, Period = Color[0], int(Time[0]), Time[1]
 if Period == 'pm':
 Hour += 12
 Time = time(hour=Hour)

 return Color, Time

functions = {
 'BasicColorTime' : color_time,
}

1
2
3
4
5
6
7
8
9
10
11

from reparse_functions import functions
import reparse

colortime_parser = reparse.parser(
 parser_type=reparse.basic_parser,
 expressions_yaml_path=path + "expressions.yaml",
 patterns_yaml_path=path + "patterns.yaml",
 functions=functions
)

print(colortime_parser("~ ~ ~ go to the store ~ buy green at 11pm! ~ ~")
)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

from the documentation

gif_logical_screen = Struct("logical_screen",
 ULInt16("width"),
 ULInt16("height"),
 [..]
 If(lambda ctx: ctx["flags"]["global_color_table"],
 Array(lambda ctx: 2**(ctx["flags"]["global_color_table_bpp"] + 1
),
 Struct("palette",
 ULInt8("R"),
 ULInt8("G"),
 ULInt8("B")
)
)
)

reparse_functions.py Python

Reparse_example.py Python

Construct GIF example Python

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://construct.readthedocs.io/en/latest/

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 20/21

Parsing: Tools and
Libraries

Receive the guide to your inbox to

read it on all your devices when you

have time. Learn about parsing in

Java, Python, C#, and JavaScript

First Name

Email Address

Sign Up & Get the guide

We won't send you spam. Unsubscribe at any

time.

There is a nice amount of documentation and even many example grammars for different
kinds of format
[https://github.com/construct/construct/tree/master/construct/examples/formats] , such as
filesystems or graphics files.

Summary
Any programming language has a different community with its peculiarities. These
differences remains even when we compare the same interests across the languages. For
instance, when we compare parsers tools we can see how Java and Python developers live
in a different world.

The parsing tools and libraries for Python for the most part use very readable grammars
and are simple to use. But the most interesting thing is that they cover a very wide
spectrum of competence and use cases. There seems to be an uninterrupted line of tools
available from regular expression, passing through Reparse to end with TatSu and ANTLR.

Sometimes this means that it can be confusing, if you are a parsing expert coming from a
different language. Because few parser generators actually generate parsers, but they
mostly interpret them at runtime. On the other hand, with Python you can really find the
perfect library, or tools, for your needs. And to help you with that we hope that this
comparison has been useful for you.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

)

gif_header = Struct("gif_header",
 Const("signature", b"GIF"),
 Const("version", b"89a"),
)

[..]

gif_file = Struct("gif_file",
 gif_header,
 gif_logical_screen,
 [..]
)

if __name__ == "__main__":
 f = open("../../../tests/sample.gif", "rb")
 s = f.read()
 f.close()
 # if you want to build the file, you just have to provide the data
 # to the build() function
 print(gif_file.parse(s))

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://github.com/construct/construct/tree/master/construct/examples/formats

12/15/2018 Parsing in Python: all the tools and libraries you can use

https://tomassetti.me/parsing-in-python/ 21/21

Tags: Python

You might also like

DO YOU NEED A PARSER?

We can design parsers for new languages, or rewrite parsers for existing
languages built in house.

On top of parsers we can then help building interpreters, compilers, code
generators, documentation generators, or translators (code converters) to
other languages.

Let’s Talk!

© 2018 Strumenta | Privacy Policy of Strumenta Websites    

Email Address

GET THE CHEATSHEET

 Cheatsheet of Parsing in Python

A cheatsheet that sums up the

strong and weak points of each

parsing tool and tells you which

tools to use for each parsing need

Sign up to download this FREE Cheatsheet

https://tomassetti.me/tag/python/
https://tomassetti.me/develop-dsls-for-eclipse-and-intellij/
https://tomassetti.me/turin-programming-language-for-the-jvm-building-advanced-lexers-with-antlr/
https://tomassetti.me/parsing-any-language-in-java-in-5-minutes-using-antlr-for-example-python/
https://tomassetti.me/antlr-and-jetbrains-mps-parsing-files-and-display-the-ast-usign-the-tree-notation/
https://tomassetti.me/on-the-need-of-a-generic-library-around-antlr-using-reflection-to-build-a-metamodel/
https://tomassetti.me/getting-started-with-antlr-building-a-simple-expression-language/
https://tomassetti.me/building-and-testing-a-parser-with-antlr-and-kotlin/
https://tomassetti.me/create-simple-parser-c-sprache/
http://tomassetti.me/contact-me-about-a-project/
https://strumenta.com/privacy-policy/
http://twitter.com/ftomasse
http://ie.linkedin.com/in/federicotomassetti
mailto:federico@tomassetti.me
https://tomassetti.me/feed/

